

2.1 Beschreibung linearer Systeme im Zeitbereich

2.1.1 Differenzialgleichung

in all gemeiner Form (für technische Systeme ist $n \ge m$)

$$a_{n} x_{a}^{(n)} (t) + a_{n-1}^{(n-1)} x_{a}^{(1)} (t) + \dots + a_{2} x_{a}^{(2)} + a_{1} x_{a}^{(1)} (t) + a_{0} x_{a}^{(1)} (t)$$

$$= b_{m} x_{e}^{(1)} (t) + b_{m-1}^{(2)} x_{e}^{(1)} (t) + \dots + b_{2} x_{e}^{(1)} (t) + b_{1} x_{e}^{(1)} (t) + b_{0} x_{e}^{(1)} (t)$$

I-Element

Differenzialgleichung:

$$\frac{\mathrm{d}x_{\mathrm{a}}(t)}{\mathrm{d}t} = K_{\mathrm{I}} \cdot x_{\mathrm{e}}(t) \text{ bzw. } x_{\mathrm{a}}(t) = K_{\mathrm{I}} \int_{0}^{t} x_{\mathrm{e}}(\tau) \mathrm{d}\tau + x_{\mathrm{a}}(0)$$

mit
$$K_{\rm I} = \frac{x_{\rm aN}}{x_{\rm eN}} \cdot \frac{1}{T_{\rm I}}$$
 $x_{\rm a}(t) = \frac{x_{\rm aN}}{x_{\rm eN}} \cdot \frac{1}{T_{\rm I}} \int_0^t x_{\rm e}(\tau) d\tau + x_{\rm a}(0)$

 K_1 - Integrierverstärkung, T_1 - Integrierzeitkonstante, x_{eN} - Maximal- oder Nennwert der Eingangsgröße, x_{aN} - Maximal- oder Nennwert der Ausgangsgröße

Übertragungsfunktion:
$$G(p) = \frac{X_{a}(p)}{X_{e}(p)} = \frac{K_{I}}{p} = \frac{x_{aN} / x_{eN}}{pT_{I}}$$

Übergangsfunktion:

Pol/Nullstellen-Verteilung:

Ortskurve:

Bode-Diagramm:

I-T1-Element Differenzialgleichung:

$$T_{1} \cdot \frac{dx_{a}(t)}{dt} + x_{a}(t) = K_{1} \cdot \int_{0}^{t} x_{e}(\tau) d\tau + x_{a}(0)$$
$$= \frac{x_{aN}}{x_{eN}} \cdot \frac{1}{T_{I}} \int_{0}^{t} x_{e}(\tau) d\tau + x_{a}(0)$$

mit
$$K_{\rm I} = \frac{x_{\rm aN}}{x_{\rm eN}} \cdot \frac{1}{T_{\rm I}}$$

 K_1 - Integrierverstärkung, T_1 - Verzögerungszeitkonstante, T_1 - Integrierzeitkonstante, x_{eN} - Maximal- oder Nennwert der Eingangsgröße, x_{aN} - Maximal- oder Nennwert der Ausgangsgröße

Übertragungsfunktion:
$$G(p) = \frac{K_{\rm I}}{p(1+p \cdot T_{\rm I})} = \frac{x_{\rm aN} / x_{\rm eN}}{pT_{\rm I}(1+p \cdot T_{\rm I})}$$

P-T2-Element

Differenzialgleichung:

$$T_0^2 \frac{d^2 x_a(t)}{dt^2} + 2DT_0 \frac{dx_a(t)}{dt} + x_a(t) = K_P \cdot x_e(t)$$

 K_P - Verstärkung, D - Dämpfungsgrad ($0 \le D < 1$ für P-T2S-Element, $D \ge 1$ für P-T2-Element), $\omega_0=1/T_0$ - natürliche Kreisfrequenz

Übertragungsfunktion allgemein:

$$G(p) = \frac{X_{a}(p)}{X_{e}(p)} = \frac{K_{P}}{1 + 2DT_{0} \cdot p + T_{0}^{2} \cdot p^{2}} = \frac{K_{P} \cdot \omega_{0}^{2}}{\omega_{0}^{2} + 2D\omega_{0} \cdot p + p^{2}}$$

- *schwingungsfähige* P-T2S-Elemente ($0 \le D < 1$)
- nicht schwingungsfähige P-T2-Elemente (D≥1)

Kennwertermittlung mit der Flächenmethode

140 Definition und Bedeutung wichtiger Gütemaße

Kenngröße	Beziehung	Gültigkeit
Beruhigungszeit auf 2 %	$T_{2\%}\approx \frac{4}{D\cdot \omega_0}$	
allgemein	$T_{\varepsilon} = \frac{\left \ln(\varepsilon \cdot \sqrt{1 - D^2} \right }{D \cdot \omega_0}$	

5.3.5 Kenngrößen für Störverhalten

Näherung der Übertragungsfunktion für Eingangsstörung:

$$G_{\text{Ze}} = \frac{Y(p)}{Z_{\text{e}}(p)} = \frac{G_{\text{S}}}{1 + G_{\text{S}} \cdot G_{\text{R}}} = \frac{K_{\text{S}}}{T_{\text{S}}} \frac{p}{p^2 + 2D\omega_0 p + \omega_0^2}$$

Regelabweichung für sprungförmige Störung am Eingang:

$$e(t) = \frac{-K_{\rm S}}{\omega_0 T_{\rm S} \sqrt{1 - D^2}} e^{-D\omega_0 t} \sin \omega_0 t \sqrt{1 - D^2}$$

Maximum der Regelabweichung:

$$e_{\max} = \frac{K_{\rm S}}{\omega_0 T \sqrt{1 - D^2}} \exp(-\varphi \cot \varphi) \cdot \sin \varphi$$
$$= \frac{K_{\rm S}}{\omega_0 T} \exp\left(-\frac{D \arccos D}{\sqrt{1 - D^2}}\right) \quad \text{wobei } \varphi = \arccos D$$
bei $T_{\max} = \frac{\arccos D}{\omega_0 \sqrt{1 - D^2}}$

Lineare Regelfläche:

$$A_{\rm lin} = \frac{K_{\rm S}}{\omega_0^2 T}$$

	K _R	$T_{\rm N}, T_{\rm D1}$	$T_{\rm V}, T_{\rm D2}$	Δh	T _{an}
PI normal	$\frac{1}{2K_{\rm S}}$	$T_{\rm N} = \frac{T_{\Sigma}}{2}$		4,32 %	$2,36 \cdot T_{\Sigma}$
PI schnell	$\frac{1}{K_{\rm S}}$	$T_{\rm N}=0,7\cdot T_{\Sigma}$		6,82 %	
PID normal	$\frac{1}{K_{\rm S}}$	$T_{\rm D1} = \frac{T_{\Sigma}}{3}$ $T_{\rm N} = \frac{2 \cdot T_{\Sigma}}{3}$	$T_{\rm D2} = \frac{T_{\Sigma}}{3}$ $T_{\rm V} = \frac{T_{\Sigma}}{6}$	4,32 %	$1,571 \cdot T_{\Sigma}$
PID schnell	$\frac{2}{K_{\rm S}}$	$T_{\mathrm{D1}} = 0,469 \cdot T_{\Sigma}$ $T_{\mathrm{N}} = 0,8 \cdot T_{\Sigma}$	$T_{\rm D2} = 0.331 \cdot T_{\Sigma}$ $T_{\rm V} = 0.194 \cdot T_{\Sigma}$	6,82 %	$0,887 \cdot T_{\Sigma}$

Bemessungstabelle

5

Verfahren nach Aström, Übergangsmethode [7]

Verwendung einer erweiterten Regelkreisstruktur mit 2 Freiheitsgraden (siehe Abschnitt 5.5.1):

Regelungsgesetz:

$$u(t) = K_{\rm R} \left(e_{\rm p} + \frac{1}{T_{\rm N}} \int_{0}^{t} e(\tau) \mathrm{d}\tau + T_{\rm V} \frac{\mathrm{d}e_{\rm d}}{\mathrm{d}t} \right)$$

e = w - y; $e_{\rm P} = bw - y$; $e_{\rm D} = cw - y$, oft wird c=0 gewählt

Einstellparameter: $M_{\rm S} = \max_{\omega} \left| \frac{1}{1 + G_{\rm S}(j\omega) \cdot G_{\rm R}(j\omega)} \right|$

Verfahren nach Aström, Frequenzantwortmethode [7]

Bestimmung von T_{krit} , K_{krit} z.B. mit Schwingungsversuch oder ZPR-Versuch, (siehe Abschnitt 4.3.3), Berechnung von κ :

$$\kappa = \left| \frac{G_{\rm S}(j\omega_{\rm krit})}{G_{\rm S}(0)} \right| = \frac{1}{K_{\rm S} \cdot K_{\rm krit}} = \frac{1}{G_{\rm S}(0) \cdot K_{\rm krit}}$$

PI-Regler für Strecken mit Ausgleich $f(\kappa) = a_0 e^{a_1 \kappa + a_2 \kappa^2}$

<i>M</i> _S =1,4					<i>M</i> _S =2,0		
	a_0	<i>a</i> ₁	<i>a</i> ₂	a_0	<i>a</i> ₁	<i>a</i> ₂	
$K_{\rm R}/K_{\rm krit} = f(\kappa)$	0,053	2,9	-2,6	0,13	1,9	-1,3	
$T_{\rm N}/T_{\rm krit} = f(\kappa)$	0,9	-4,4	2,7	0,90	-4,4	2,7	
$b=f(\kappa)$	1,1	-0,0061	1,8	0,48	0,40	-0,17	

PID-Regler für Strecken mit Ausgleich $f(\kappa) = a_0 e^{a_1 \kappa + a_2 \kappa^2}$

<i>M</i> _S =1,4				<i>M</i> _S =2,0		
	a_0	<i>a</i> ₁	<i>a</i> ₂	a_0	<i>a</i> ₁	<i>a</i> ₂
$K_{\rm R}/K_{\rm krit} = f(\kappa)$	0,33	-0,31	-1,0	0,72	-1,6	1,2
$T_{\rm N}/T_{\rm krit} = f(\kappa)$	0,76	-1,6	-0,36	0,59	-1,3	0,38
$T_{\rm V}/T_{\rm krit}=f(\kappa)$	0,17	-0,46	-2,1	0,15	-1,4	0,56
$b=f(\kappa)$	0,58	-1,3	3,5	0,25	0,56	-0,12

Verfahren nach Haalmann [8]

Grundgedanke:

- Geeignet vor allem für Regelstrecken mit Totzeit
- Vorgabe der Übertragungsfunktion der offenen Kette

$$G_0(p) = \frac{2}{3 \cdot T_{\mathsf{t}} \cdot p} \,\mathsf{e}^{-pT_{\mathsf{t}}}$$

Der Wert 2/3 ergab sich durch Minimierung des quadratischen Fehlers für sprungförmige Führungsgrößenänderung. Die Empfindlichkeit $M_{\rm S}$ beträgt 1,9.

Bemessungstabelle:	•
--------------------	---

Regelstr	eckenmodell	Regl	er
Тур	$G_{\rm S}(p)$		$G_{\rm R}(p)$
$P-T_1-T_t$	$K_{\rm S}$ $e^{-pT_{\rm t}}$	PI	$\frac{K_{\rm R} \left(1 + pT_{\rm N}\right)}{K_{\rm R} \left(1 + pT_{\rm N}\right)}$
	$1 + pT_1$		$p \cdot T_N$
			$T_{\rm N} = T_1, \ K_{\rm R} = \frac{2 \cdot T_1}{3 \cdot T_{\rm t} \cdot K_{\rm S}}$
P-T ₂ -T _t	$\frac{K_{\rm S}}{(1+pT_1)(1+pT_2)} \cdot {\rm e}^{-pT_{\rm t}}$	PID	$K_{\rm R} \left(1 + \frac{1}{p \cdot T_{\rm N}} + p \cdot T_{\rm V} \right)$
			$T_{\rm N} = T_1 + T_2; \ T_{\rm V} = \frac{T_1 \cdot T_2}{T_1 + T_2}$
			$K_{\rm R} = \frac{2(T_1 + T_2)}{3T_{\rm t} \cdot K_{\rm S}}$

5

5.4.5 Reglerentwurf im Frequenzbereich

Aufgabe: Der Verlauf des Amplituden- und Phasenganges der offenen Kette $G_0(j\omega)$ (siehe Abs. 5.3.3) ist durch geeignete Wahl von $G_R(j\omega)$ so zu gestalten, dass der geschlossene Kreis die gestellten Güteanforderungen erfüllt (siehe Abs. 5.3.4).

 $\begin{array}{ll} \textit{Erfahrungswerte für Amplituden- und Phasenrand:} \\ \mbox{Führungsverhalten:} & 12dB \leq A_{\rm R} \leq 20dB \ ; \ 40^\circ \leq \varphi_{\rm R} \leq 60^\circ \\ \mbox{Störverhalten:} & 3,5dB \leq A_{\rm R} \leq 9,5dB \ ; \ 20^\circ \leq \varphi_{\rm R} \leq 50^\circ \\ \end{array}$

Kompensationsmethode im Bode-Diagramm

• Kompensation von Streckenverzögerungen wie folgt: *PI*-Regler an *PT_n*-Strecke: Größte Zeitkonstante $G_{\rm S}(p) = \frac{K_{\rm S}}{(1+pT_1)\cdot(1+pT_2)\dots}; \quad G_{\rm R}(p) = K_{\rm R} \frac{1+p \cdot T_{\rm N}}{p \cdot T_{\rm N}}$ mit $T_{\rm N} = T_1$

Regel	strecke G _S (p)	Regl	$\operatorname{er} G_{\mathbf{R}}(p)$
P-T _n	$\frac{K_{\rm S}}{(1+pT_{\rm 1})(1+pT_{\rm E})}$	PI	$\frac{K_{\rm R}\left(1+pT_{\rm N}\right)}{p\cdot T_{\rm N}}$
	$T_1 >> T_E, \ T_E = \sum_{i=2}^n T_i$		$T_{\rm N} = T_{\rm 1}, \ K_{\rm R} = \frac{T_{\rm N}}{2 \cdot K_{\rm S} \cdot T_{\rm E}}$
$P-T_n$	K _S	PID	$K_{\rm R} (1 + pT_{\rm D1})(1 + pT_{\rm D2})$
	$(1+pT_1)(1+pT_2)(1+pT_{\rm E})$		$p \cdot T_{\rm N}$
	$T_1 > T_2 >> T_E, \ T_E = \sum_{i=3}^n T_i$		$= K_{\rm R} \left(1 + \frac{1}{p \cdot T_{\rm N}} + p \cdot T_{\rm V} \right)$
			$T_{\rm D1} = T_1, \ T_{\rm D2} = T_2,$
			$T_{\rm N} = T_{\rm D1} + T_{\rm D2}; T_{\rm V} = \frac{T_{\rm D1} \cdot T_{\rm D2}}{T_{\rm D1} + T_{\rm D2}}$
			$K_{\rm R} = \frac{T_{\rm N}}{2 \cdot K_{\rm S} \cdot T_{\rm E}} = \frac{T_1 + T_2}{2K_{\rm S}T_{\rm E}}$

Symmetrisches Optimum

Grundgedanke:

Bei integralen Strecken ist eine Zeitkonstantenkompensation nicht möglich. Der Regler wird so bemessen, dass die Durchtrittsfrequenz ω_D der offenen Kette das geometrische Mittel der Eckkreisfrequenzen ω_N und ω_E ist. Ein zusätzlicher Parameter $a^2 = T_N / T_E$ legt das Verhältnis von T_N und T_E fest und bestimmt damit den Phasenrand. Meist wird a=2 gewählt.

Durch einen zusätzlichen Vorfilter kann das Überschwingen bei Führung minimiert werden.

Das Verfahren ist auch für P- T_n -Strecken mit ein oder zwei großen Zeitkonstanten anwendbar. Damit werden im Vergleich zum Betragsoptimum kürzere Ausregelzeiten von Störungen erzielt.

5

Regel	strecke G _S (p)	Reg	ler $G_{\mathbf{R}}(p)$
I-T _n	$\frac{K_{\rm IS}}{p(1+pT_{\rm E})}$	PI	$\frac{K_{\rm R} \left(1 + pT_{\rm N}\right)}{p \cdot T_{\rm N}}$
	$T_{\rm E} = \sum_{i=1}^n T_i$		$T_{\rm N} = a^2 T_{\rm E}, \ K_{\rm R} = \frac{1}{a \cdot K_{\rm IS} \cdot T_{\rm E}}$
I-T _n	$\frac{K_{\rm IS}}{p(1+pT_1)(1+pT_{\rm E})}$	PID	$\frac{K_{\mathrm{IR}} \left(1 + pT_{\mathrm{D1}}\right) \left(1 + pT_{\mathrm{D2}}\right)}{p}$
	$T_1 > T_2, \ T_E = \sum_{i=2}^n T_i$		$T_{D2} = T_1 ; T_{D1} = a^2 T_E$ $K_{IR} = \frac{1}{K_{IS} \cdot a^3 T_E^2}$

*Bemessungstabelle für I-T*_n-*Strecken:*

Führungsübertragungsfunktion mit I-T_n-Modell ohne Vorfilter:

$$G_{\rm W}(p) = \frac{1 + a^2 \cdot T_{\rm E} \cdot p}{1 + a^2 \cdot T_{\rm E} \cdot p + a^3 \cdot T_{\rm E}^{\ 2} \cdot p^2 + a^3 \cdot T_{\rm E}^{\ 3} \cdot p^3}$$

Zusammenhang zwischen a und Phasenrand φ_R *bei PI-Regler:*

$$a = \frac{1 + \sin \varphi_{\rm R}}{\cos \varphi_{\rm R}}$$

Bevorzugte Wahl: *a*=2

Vorfilter:

Führungsübertragungsfunktion mit Vorfilter:

$$G_{\rm W}(p) = \frac{1}{1 + a^2 \cdot T_{\rm E} \cdot p + a^3 \cdot T_{\rm E}^{\ 2} \cdot p^2 + a^3 \cdot T_{\rm E}^{\ 3} \cdot p^3}$$

	ohne Vorfilter	mit Vorfilter
Anregelzeit T_{an}	3,1 <i>T</i> _E	7,6 <i>T</i> _E
Ausregelzeit $T_{2\%}$	16,5 <i>T</i> _E	13,4 <i>T</i> _E
Überschwingweite Δh	43,4 %	8,1 %

Gütekennwerte im Zeitbereich mit a=2:

*Bemessungstabelle für P-T*_n-*Strecken:*

P-T _n	$\frac{K_{\rm S}}{\left(1+pT_{\rm I}\right)\left(1+pT_{\rm E}\right)}$	PI	$\frac{K_{\rm R}\left(1+pT_{\rm N}\right)}{p\cdot T_{\rm N}}$	
	$T_1 >> a^2 T_{\rm E}; T_{\rm E} = \sum_{i=2}^{n} T_i$		$T_{\rm N} = a^2 T_{\rm E}, \ K_{\rm R} = \frac{I_1}{a \cdot K_{\rm S} \cdot T_{\rm E}}$	
$P-T_n$	K _S	PID	$K_{\rm IR} (1 + pT_{\rm D1})(1 + pT_{\rm D2})$	
	$\overline{(1+pT_1)(1+pT_2)(1+pT_E)}$		р	
	$T_1 > T_2 >> T_E,$		$T_{\rm D2} = T_2, \ T_{\rm D1} = a^2 T_{\rm E}$	
	$T_1 >> a^2 T_{\rm E}, T_{\rm E} = \sum_{i=3}^n T_i$		$K_{\rm IR} = \frac{T_1}{K_{\rm S} \cdot a^3 \cdot T_{\rm E}^2}$	

5.4.6 Polvorgabe

Grundgedanke: Einen Regler finden, der zu den gewünschten Polen des geschlossenen Kreises führt.

PI-Regler an P-T₁-Strecke

$$G_{\rm S}(p) = \frac{K_{\rm S}}{1 + pT_{\rm 1}}$$
 $G_{\rm R}(p) = \frac{K_{\rm R}(1 + pT_{\rm N})}{p \cdot T_{\rm N}}$

Die Pole sind durch die charakteristische Gleichung gegeben:

$$1 + G_{\rm S}G_{\rm R} = p^2 + p\frac{1 + K_{\rm S}K_{\rm R}}{T_1} + \frac{K_{\rm S}K_{\rm R}}{T_1 \cdot T_{\rm N}} = 0$$

Gewünschte charakteristische Gleichung: $p^2 + 2D\omega_0 p + \omega_0^2 = 0$

Ein Koeffizientenvergleich führt zu den Reglerparametern:

$$\omega_0^2 = \frac{K_S K_R}{T_1 \cdot T_N}$$
; $2D\omega_0 = \frac{1 + K_S K_R}{T_1}$

5

Diskretisierung des I-Anteils

Der kontinuierliche Integralterm ist gegeben durch:

$$u_{\rm I} = \frac{K_{\rm R}}{T_{\rm N}} \int_0^t e(\tau) d\tau \qquad \frac{du_{\rm I}(t)}{dt} = \frac{K_{\rm R}}{T_{\rm N}} e(t)$$

$$\frac{u_{\mathrm{I}}(k+1) - u_{\mathrm{I}}(k)}{T} = \frac{K_{\mathrm{R}}}{T_{\mathrm{N}}} e(k) \implies \frac{u_{\mathrm{I}}(k) - u_{\mathrm{I}}(k-1)}{T} = \frac{K_{\mathrm{R}}}{T_{\mathrm{N}}} e(k-1)$$

inkrementelle Form: $u_{I}(k) = u_{I}(k-1) + \frac{K_{R}}{T_{N}} \cdot e(k-1) \cdot T$ Summe: $u_{I}(k) = \frac{K_{R}}{T_{N}} \sum_{i=0}^{k-1} e(i) \cdot T$

Näherung durch Rückwärtsdifferenz.

$$\frac{u_{I}(k) - u_{I}(k-1)}{T} = \frac{K_{R}}{T_{N}}e(k)$$

inkrementelle Form:
Summe:
$$u_{I}(k) = u_{I}(k-1) + \frac{K_{R}}{T_{N}} \cdot e(k) \cdot T$$
$$u_{I}(k) = \frac{K_{R}}{T_{N}} \sum_{i=0}^{k} e(i) \cdot T$$

Näherung durch Trapezregel
$$\frac{u_{\rm I}(k) - u_{\rm I}(k-1)}{\Delta T} = \frac{K_{\rm R}}{T_{\rm N}} \cdot \frac{e(k) + e(k-1)}{2}$$

inkrementelle Form: $u_{I}(k) = u_{I}(k-1) + \frac{K_{R}}{T_{N}} \cdot \frac{e(k) + e(k-1)}{2} \cdot T$ Summe: $u_{I}(k) = \frac{K_{R}}{T_{N}} \sum_{i=0}^{k} \frac{e(i) + e(i-1)}{2} \cdot T$

Allgemeine Form für alle Näherungen von u_I

 $u_{\rm I}(k) = u_{\rm I}(k-1) + b_{i1}e(k) + b_{i2}e(k-1)$

Diskretisierung des D-Anteils

Der kontinuierliche Differenzialterm ist gegeben durch:

- a) Regler ohne Begrenzung des D-Anteils: $u_{\rm D}(t) = K_{\rm R} \cdot T_{\rm V} \cdot \dot{e}_{\rm D}(t)$
- b) Regler mit Begrenzung des D-Anteils:

$$\frac{T_V}{N}\dot{u}_{\rm D}(t) + u_{\rm D}(t) = K_{\rm R} \cdot T_{\rm V} \cdot e_{\rm D}(t)$$

$$e_{\rm R}(t) = c \cdot w(t) - v(t); \text{ wenn } c = 1 \text{ dann } e_{\rm R}(t)$$

 $e_{\rm D}(t) = c \cdot w(t) - y(t)$; wenn c = 1, dann $e_{\rm D}(t) = e(t)$

Näherung durch Vorwärtsdifferenz

Fall a):
$$u_{\rm D}(k-1) = K_{\rm R} \cdot T_{\rm V} \left[\frac{e_{\rm D}(k) - e_{\rm D}(k-1)}{T} \right]$$

Näherung durch Rückwärtsdifferenz

Fall a):
$$u_{\rm D}(k) = K_{\rm R} \cdot T_{\rm V} \left[\frac{e_{\rm D}(k) - e_{\rm D}(k-1)}{T} \right]$$

Fall b):
$$\frac{T_{\rm V}}{N} \frac{u_{\rm D}(k) - u_{\rm D}(k-1)}{T} + u_{\rm D}(k) = K_{\rm R} \cdot T_{\rm V} \frac{e_{\rm D}(k) - e_{\rm D}(k-1)}{T}$$
$$u_{\rm D}(k) = \left(\frac{T_{\rm V}}{T_{\rm V} + N \cdot T}\right) u_{\rm D}(k-1) + \frac{K_{\rm R} \cdot T_{\rm V} \cdot N}{T_{\rm V} + N \cdot T} \cdot \left(e_{\rm D}(k) - e_{\rm D}(k-1)\right)$$

Näherung durch Trapezregel

Fall a):
$$\frac{u_{\rm D}(k) + u_{\rm D}(k-1)}{2} = K_{\rm R} \cdot T_{\rm V} \frac{e_{\rm D}(k) - e_{\rm D}(k-1)}{T}$$
$$u_{\rm D}(k) = -u_{\rm D}(k-1) + 2K_{\rm R} \cdot T_{\rm V} \left[\frac{e_{\rm D}(k) - e_{\rm D}(k-1)}{T} \right]$$

5

Inkrementelle Form, ohne D-Anteil-Begrenzung:

5

*1 Integral- und Differenzialterm mit Rückwärtsdifferenz angenähert

*² Integralterm mit Trapezregel und Differenzialterm mit Rückwärtsdifferenz angenähert

Allgemeine Darstellung des digitalen PID-Algorithmus

Einführung des Verschiebeoperators q^{-1} für den Schritt k-1.

Regler mit zwei Freiheitsgraden ohne D-Anteil-Begrenzung:

$$u(k)(1-q^{-1}) = w(k)(t_0 + t_1q^{-1} + t_2q^{-2}) - y(k)(s_0 + s_1q^{-1} + s_2q^{-2})$$

Regler mit Einheitsrückführung ohne D-Anteil-Begrenzung:

$$u(k)(1-q^{-1}) = e(k)(s_0 + s_1q^{-1} + s_2q^{-2})$$

Es gilt $T(q^{-1}) = S(q^{-1}).$

Allgemeinste Form des PID-Algorithmus:

$$R(q^{-1})u(k) = T(q^{-1})w(k) - S(q^{-1})y(k)$$

$$u(k) = \left[-q^{-1}R'(q^{-1})u(k) + T(q^{-1})w(k) - S(q^{-1})y(k)\right] \cdot 1/r_0$$

mit $R(q^{-1}) = r_0 + r_1q^{-1} + r_2q^{-2}$ und $R'(q^{-1}) = r_1 + r_2q^{-1}$